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ABSTRACT

Four land surface models in uncoupled and coupled configurations are compared to observations of daily

soil moisture from 19 networks in the conterminous United States to determine the viability of such com-

parisons and explore the characteristics of model and observational data. First, observations are analyzed for

error characteristics and representation of spatial and temporal variability. Some networks have multiple

stations within an area comparable to model grid boxes; for those it is found that aggregation of stations

before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive

to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely because of

differences in instrumentation, calibration, and maintenance. Buried sensors appear to have less random

error than near-field remote sensing techniques, and heat-dissipation sensors show less temporal variability

than other types.Model soil moistures are evaluated using threemetrics: standard deviation in time, temporal

correlation (memory), and spatial correlation (length scale).Models do relatively well in capturing large-scale

variability of metrics across climate regimes, but they poorly reproduce observed patterns at scales of hun-

dreds of kilometers and smaller. Uncoupled land models do no better than coupledmodel configurations, nor

do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to di-

agnose. Using data for model validation, calibration, or data assimilation from multiple soil moisture net-

works with different types of sensors and measurement techniques requires great caution. Data from models

and observations should be put on the same spatial and temporal scales before comparison.

1. Introduction

Coupled land–atmosphere model development has

lagged behind coupled ocean–atmosphere model devel-

opment for a variety of reasons. Top among them is that

the necessarymeasurements for assessing land–atmosphere

feedback processes have been largely lacking. In recent

years, collocated measurements of surface fluxes, near-

surface meteorology, and land surface states like soil

moisture have begun to cross a critical threshold of

quantity and coverage, largely because of the matura-

tion of the global FLUXNET set of environmental

measurements (Baldocchi et al. 2001). Systematic

benchmarking of land surface models (LSMs) has begun

based on simulation of daily mean surface fluxes (Best

et al. 2015). However, for soil moisture alone there are

even more widespread data in the form of many inde-

pendent networks of in situ measurements (Dorigo et al.

2011; Quiring et al. 2016). They span a tremendous
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range of station densities, down to subgrid scales relative

to current weather and climate models, making them

enticing for model calibration and validation.

Bringing observational data to bear on model improve-

ment requires not just the datasets and models themselves,

but also sound methods of analysis and processes under-

standing to guide the approach. Comparing models with

observations can easily become misguided, if not actu-

ally unfair, if the basic differences between how models

represent the world and how instruments measure the

world are not carefully considered and accounted for.

For a quantity like soil moisture, this is a particularly

significant issue (Dirmeyer 2004; Koster et al. 2009). Xia

et al. (2015) spatially averaged bothmodel and observed

data to coarse scales to facilitate comparison. Stillman

et al. (2014) assessed the ability of multiple soil moisture

instruments in a catchment to represent area-averaged

soil moisture, using a higher-density rain gauge network

to infer smaller-scale variations. Gruber et al. (2013)

examined random errors in soil moisture at spatial scales

comparable to global models using a triple collocation

method combining remotely sensed and modeled soil

moisture estimates with in situ soil moisture measure-

ments, highlighting the care that must be taken in ap-

plying in situ measurements as ground truth. Such

approaches hold promise to evaluate remote sensing

products (Dorigo et al. 2015) and improve estimates of

soil moisture–atmosphere interactions (Crow et al. 2015).

In this study, we confront 12 unique model configu-

rations using four different land surface models with soil

moisture measurements from 19 networks across the

conterminous United States. However, we first address

the observational datasets themselves to estimate their

error characteristics in a distinctive way based on lagged

autocorrelation statistics and their representativeness of

temporal variability, spatial, and temporal scales.

Section 2 describes the observational and model data

used. The metrics evaluated are introduced in section 3,

and section 4 presents an evaluation of observational

error. Scaling issues are addressed in section 5. Section 6

gives an evaluation of soil moisture variance and mem-

ory in observations and models. Spatial scales of soil

moisture variability are considered in section 7, and

conclusions and a summary are offered in section 8.

2. Data

In this comparison, point observations and model

gridbox estimates of soil moisture data at daily time

intervals or daily time means are used. The domain of

observations for this study is confined to the conterminous

United States, andmodel comparisons are performed over

roughly the same area. Table 1 lists all networks used,

the data collections (described below) from which data

were taken, the location of the networks (many are re-

gional), and the type of instrumentation each uses.

a. International Soil Moisture Network

The International Soil Moisture Network (ISMN) is a

data synthesis effort focused on collecting in situ soil

moisture measurements and associated collocated ob-

servations of relevant meteorological data from all

available international sources (Dorigo et al. 2011,

2013). The resulting quality-controlled database of raw

observations is meant to provide ground-truth calibra-

tion and validation for satellite observations as well as

for the calibration and validation of land surfacemodels.

It is coordinated by the Global Energy andWater Cycle

Experiment (GEWEX) in cooperation with the Group

on Earth Observations (GEO) and the Committee on

Earth Observation Satellites (CEOS).

Data from many different networks and extended field

campaigns are archived by ISMN. Those networks used in

this experiment are listed inTable 2. ISMNarchives data at

the highest available temporal resolution up to hourly from

each reporting instrument, allotting one file for each in-

strument and level. Basic quality control is performed, and

records suspected to be out of range or otherwise un-

trustworthy are flagged, but no data are omitted. Figure 1a

shows the locations of stations used from ISMN.

b. North American Soil Moisture Database

The North American Soil Moisture Database (NASMD;

Quiring et al. 2016) is a collection of harmonized daily

soilmoisture data from in situmeasurements acrossNorth

America. Networks used in this study from NASMD are

listed in Table 3. The motivation for NASMD is to

provide a dataset to investigate processes by which soil

moisture variability influences climate on seasonal to in-

terannual time scales over NorthAmerica. Unlike ISMN,

NASMD provides processed data from each station lo-

cation in each network. Daily values are calculated from

stations with subdaily data using a simple average. In-

terpolation is used to fill gaps of less than 10 days using a

monthly average replacement method, which has been

shown to work well with daily observations (Ford and

Quiring 2014).

Only one time series is provided at each station and

sensor depth, regardless of howmany instruments are in

place.When stations havemultiple instruments at a single

depth, usually the first reported sensor is used. However,

if data from the first instrument are flagged by the quality-

control routine or if there are excessive missing obser-

vations, the next reported instrument is considered and

may be used instead. Because of microscale variability

in soil texture, averaging observations from multiple
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sensors was considered unjustifiable. Figure 1b shows the

distribution of stations in the NASMD repository.

c. Observational data processing

Thedata fromboth collectionswere further processed for

this study. Each data file is scanned for basic statistics in-

cluding the time range of available data, depths of in-

strument readings, and data reporting intervals so the data

from each network can be synthesized into a single file

spanning the maximum time range of the network’s obser-

vations. For the ISMNdata, dailymeans are first calculated.

For each station and profile of sensors in the soil [or

across the reporting depth for remote sensors like those

in the Cosmic-Ray Soil Moisture Observing System

(COSMOS) or Xenon Plate Boundary Observatory

(PBO) H2O (PBO H2O)], the observational data are

vertically interpolated to themodel levels for each of the

four land surface schemes in this study, following the

procedure used in the second Global Soil Wetness

Project (Dirmeyer et al. 2006). The lowest model layer

to encompass the depth of the deepest reporting sensor

is the lowest model layer to contain interpolated data;

TABLE 1. Observational networks used in this study.

Collection Network Full name Location Probe type(s) Reference(s)

NASMD AMERIFLUX AmeriFlux United States Various dielectric Baldocchi et al.

(2001)

Both ARM U.S. Department of

Energy Atmospheric

Radiation Measurement

Oklahoma and

Kansas

Campbell 229-L

and SMP1

Bond (2005)

Both AWDN Automated Weather

Data Network

Nebraska Vitel and Thetaprobe

ML2X

Hubbard et al. (1983)

NASMD CHILI Center for Hurricane

Intensity and Landfall

Investigation

Alabama Hydraprobe Kimball et al. (2010)

Both COSMOS Cosmic-Ray Soil Moisture

Observing System

United States Cosmic-ray probe Zreda et al. (2012)

NASMD DEOS Delaware Environmental

Observing System

Delaware Campbell 616L Legates et al. (2005),

(2007)

NASMD ECONet North Carolina

Environment and

Climate Observing

Network

North Carolina Thetaprobe Pan et al. (2012)

NASMD MAWN Michigan Automated

Weather Network

Michigan Campbell 616 Andresen et al. (2011)

NASMD MAW-MO Missouri Agricultural

Electronic Bulletin

Board

Missouri Campbell 616 Guinan and Travlos

(2008)

NASMD NOAA HMT NOAA Hydrometeorology

Testbed

United States Campbell 616 and

Stevens Hydraprobe

Zamora et al. (2011)

NASMD OK-MESO Oklahoma Mesonet Oklahoma Campbell 229-L Illston et al. (2008)

ISMN PBO H2O Xenon Plate Boundary

Observatory (PBO) H2O

Western United

States

GPS Larson et al. (2008)

Both SCAN U.S. Department of

Agriculture (USDA)

Soil Climate Analysis

Network

United States Hydraprobe

(analog and digital)

Schaefer et al. (2007)

NASMD SDAWN South Dakota Automated

Weather Data Network

South Dakota Stevens Hydraprobe —

Both SNOTEL Snowpack Telemetry Western United

States

Hydraprobe

(analog and digital)

Schaefer and

Paetzold (2001)

ISMN SoilSCAPE Soil Moisture Sensing

Controller and

Optimal Estimator

United States EC-5 Moghaddam et al.

(2010)

Both USCRN NOAA U.S. Climate

Reference Network

United States Stevens Hydraprobe

II Sdi-12

Bell et al. (2013)

ISMN USDA ARS USDA Agricultural

Research Service

United States Hydraprobe analog Jackson et al. (2010)

NASMD WTX-MESO West Texas Mesonet Texas Campbell 616L Schroeder et al. (2005)
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layers below are set to missing. Model layers above the

shallowest sensor depth are set to the soil moisture value

of that shallowest sensor. Otherwise, it is assumed that

the observed data of buried sensors are representative

of a layer whose top is exactly halfway between it and

the next shallowest sensor (or the surface if it is the

shallowest sensor), and whose bottom is exactly halfway

between it and the next deepest sensor (or if it is the deepest

sensor, to the same distance below as the top boundary was

determined to be above it). It is assumed that the soil

moisture across this thickness is uniform, as is typically

supposed for land surface model layers. Then the interpo-

lated value for anymodel layer is a simpleweighted average

of all observation ‘‘layers’’ that overlap the model layer,

preserving water content. This process has the advantage

that the final observed time series is on each land surface

model’s vertical coordinate, facilitating comparison.

Where there are multiple instruments at the same

station in a network in ISMN, the data are sorted based

on the number of days without missing data so that the

most complete time series can be accessed easily. Data

are gathered by network so that analyses and compari-

sons can be performed on a network-by-network basis.

An initial concern was whether the differences in the

processing of data from the same network taken from

each data collection would affect the results, particularly

the fact that some gap filling had been applied to the

NASMD time series, but not to ISMN. Furthermore, it is

evident from a comparison of Tables 2 and 3 that the

number of stations and period of data collected is not the

same between the two collections for the same network.

Comparison of network statistics, some of which are

shown in section 4, suggests there is no significant dif-

ference between the two versions of data for the same

networks. Finally, because of varying data availability, for

each calculation a fixed period was identified subjectively

for each network where most stations have data. Within

that period, a station is removed if more than half the

period is outside the range of data for that station.

d. Models

Four LSMs are confronted with the observational data

from ISMN andNASMD: the Catchment model from the

National Aeronautics and SpaceAdministration (NASA)

Goddard Space Flight Center (GSFC; Koster et al. 2000;

Ducharne et al. 2000); Noah, version 2.7 (Noah2.7), from

the National Oceanic and Atmospheric Administration

(NOAA; Ek et al. 2003); the Hydrology Tiled European

Centre forMedium-RangeWeather Forecasts (ECMWF)

Surface Scheme for Exchange over Land (HTESSEL;

Balsamo et al. 2009); and the Community Land Model,

version 4 (CLM4), which is sponsored by the National

Science Foundation (NSF) and DOE (Lawrence et al.

2011). Catchment parameterizes an idealized hillslope in

each grid box to estimate from bulk water prognostic

variables the fractional areas of saturated, unstressed, and

dry surfaces with respect to evapotranspiration; it then

calculates soil moisture profiles as a diagnostic. The other

three LSMs calculate soil moisture in each layer as a

balance between gravitational drainage and downgradient

conduction in the vertical only. All models treat infiltra-

tion of precipitation as a water input at the top, direct

evaporation from the top soil layer as an output to the

atmosphere, transpiration drawing water out of all soil

layers containing roots, and baseflow drainage removing

water from the bottom of the soil column. CLM4 includes

deep interactionwith awater-table parameterization below

the soil column. Eachmodel uses its own distributed global

map of soil properties on the model grid to determine

saturated hydraulic conductivity, porosity, and other nec-

essary hydraulic parameters. None of the models as used

here consider vertical variations in basic soil properties.

TABLE 2. Details of ISMN networks used in this study. Local extent means the network spans parts of one (or for ARM, two) states;

regional networks spanmany states, and often all of the conterminous United States. Interval indicates typical interval; for some networks

labeled ‘‘hourly’’ some subset of instruments may report 3- or 6-hourly. Years and days indicate the smallest span that incorporates all

data. The instruments column indicates the sum of themax number of each unique type or uniquely labeled type of sensor deployed at any

site. SM levels indicates the total number of unique depths of sensor placement for the network.

Network Extent Interval Stations Years Days SM levels Instruments

ARM Local Hourly 29 22 7740 10 15

AWDN Local Daily 50 13 4749 4 2

COSMOS Regional Hourly 101 7 2308 1a 1

PBO H2O Regional Daily 108 8 2865 1a 3

SCAN Regional Hourly 211 19 6877 24 52

SNOTEL Regional Hourly 415 19 6425 16 45

SoilSCAPE Regional Hourly 135 4 7256 29 6

USCRN Regional Hourly 114 15 5029 5 5

USDA ARS Regional Hourly 4 8 2618 1 4

a Sensors that sit above ground and sense soil moisture remotely—the depth of the measurement is not static and varies with location, soil

moisture, and other conditions.
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Multiple sets of soil moisture data from each of four

modeling centers above have been collected and compared.

For contributions from a given modeling center, the LSM

used is nearly or exactly the same, but theway time series of

soil moisture have been produced varies. The contributions

from each modeling center include an offline simulation

with the LSM driven by gridded global observationally

based meteorological analyses and a simulation or set of

simulations with the LSM coupled to its corresponding

global atmospheric model in a free-running (unconstrained

or forecast) mode. In the case of Noah2.7 and CLM4, an

ocean general circulation model was also coupled to the

atmospheric model, but that has little consequence for this

study, and for CLM4 predicted vegetation phenology was

enabled. For all but CLM4, there is also a reanalysis where

the atmosphere and the land surface states, to varying

extents, are constrained by data assimilation. Noah2.7 is

the LSM in two reanalyses investigated here. Table 4

outlines the various configurations and the spatial reso-

lutions of these models. When compared to observed

data, the model grid box containing the site of observed

station is used.

3. Metrics

The model simulations described in section 2d are

confronted with three metrics from the observed soil

moisture networks’ data. Additionally, the observations

FIG. 1. Station locations for the networks of (a) ISMN and (b) NASMD.

APRIL 2016 D IRMEYER ET AL . 1053



themselves are evaluated to assess their likely mea-

surement error based on the methodology of Vinnikov

et al. (1996), as described in the next section.

The first metric assessed is the variance or standard

deviation of daily soil moisture for each month, grouped

by season [December–February (DJF), March–May

(MAM), June–August (JJA), and September–November

(SON)]. No attempt is made to remove a climatological

annual cycle, as the in situ networks have, by and large,

not been in place long enough to calculate stable clima-

tological mean annual cycles for most stations. As we are

concerned with linkages between land and atmosphere at

subseasonal time scales, the mean of each month is re-

moved from all data in that month so that no interannual

variability enters the calculation, but some seasonal

trends within months may still be present that may affect

statistics.

Second, the soil moisture memory is assessed for each

station and vertical level in the soil by computing lagged

autocorrelations of the daily time series. Lagged auto-

correlations indicate soil moisture behaves as a first-

order Markov process (Schlosser and Milly 2002). As a

result, we can estimate time scales of correlation, that is,

memory, as the time it takes the lagged autocorrelation

of soil moisture to drop to 1/e. We have found that linear

extrapolation between the values of ln(r), where r is

autocorrelation at lags of 1 and 2 days, to the lag where

ln(r) 5 21 provides an estimate that is not significantly

different from using a linear fit through ln(r) at a larger

number of lags (cf. Robock et al. 1995). This is also

TABLE 3. As in Table 2, but for NASMD.

Network Extent Interval Stations Years Days SM levels Instruments

AMERIFLUX Regional Daily 55 13 5844 37 1

ARM Local Daily 17 16 5845 10 1

AWDN Local Daily 41 5 1827 4 1

CHILI Local Daily 25 3 1097 1 1

COSMOS Regional Daily 54 5 1828 1a 1

DEOS Local Daily 26 12 3289 1 1

ECONet Local Daily 31 15 5479 1 1

MAWN Local Daily 80 17 6209 2 1

MAW-MO Local Daily 8 12 4018 1 1

NOAA HMT Regional Daily 25 16 4384 3 1

OK-MESO Local Daily 104 13 4749 4 1

SCAN Regional Daily 123 17 6210 13 1

SNOTEL Regional Daily 351 13 4750 16 1

SDAWN Local Daily 11 7 2558 5 1

USCRN Regional Daily 113 4 1462 27 1

WTX-MESO Local Daily 53 11 4018 4 1

a Sensors that sit above ground and sense soil moisture remotely—the depth of the measurement is not static and varies with location, soil

moisture, and other conditions.

TABLE 4. Specifications for the four land and atmosphere models, including source of data and spatial resolution.

LSM Offline Free running Reanalysis

Catchment (three layers spanning 2.01m) MERRA-Land

(MERRA 1 GPCP forcing)

GEOS-5 simulation on

MERRA-2 mode

MERRA

0.678 3 0.58 0.678 3 0.58 0.678 3 0.58
Reichle et al. (2011) Rienecker et al. (2011)

Noah2.7 (four layers spanning 2.00m) GLDAS CFSv2 seasonal forecasts CFSR

18 3 18 0.948 3 0.958 0.318 3 0.378
Rodell et al. (2004) Saha et al. (2010);

20CR, version 2

1.888 3 1.918
Compo et al. (2011)

HTESSEL (four layers spanning 2.89m) ERA-Interim Land IFS in Athena project ERA-Interim

0.758 3 0.758 0.148 3 0.148 0.758 3 0.758
Balsamo et al. (2015) Kinter et al. (2013) Dee et al. (2011)

CLM4 (12 layers spanning 3.43m) Qian et al. (2007) forcing CCSM4 seasonal forecasts —

1.258 3 0.98 1.258 3 0.98
Lawrence et al. (2011) Dirmeyer et al. (2013)
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calculated on a seasonal basis as there is a pronounced

annual cycle of memory time scales in most locations.

These are then compared to model grid boxes at the

same locations. Third, we perform a similar calculation

between time series from pairs of stations, and between

their corresponding model grid boxes, to assess spatial

correlation and length scales.

Finally, we are concerned about the representative-

ness of point soil moisture measurements for model

gridbox averages. There are inherent problems with

direct comparison between point observations and LSM

gridbox output (cf. Gruber et al. 2013; Dirmeyer et al.

2013). The densities of some of the in situ networks are

high enough to allow us to assess the sensitivity of an

area-average soil wetness at model grid scales to the

number of measurements contributing to the average.

Thus, we attempt to address the issue of scale mismatch

and account for it when comparing models and obser-

vations. We address the scaling issue in section 5 before

showingmodel performance on themetrics listed above.

4. Observational error

Vinnikov and Yeserkepova (1991), following the

proposition of Delworth and Manabe (1988), showed

that soil moisture time series behave like first-order

Markov processes, such that the autocorrelation of soil

moisture at a location at lag t decreases as lag grows:

r(t)5 exp(2lt) , (1)

where l is the decay frequency, or 1/l is the time scale.

Robock et al. (1995) showed that for actual observed

data, a linear best fit of ln(r) versus t for a range of lags

does not cross zero at a value of r5 1 [i.e., ln(r)5 0], but

rather at some correlation r , 1. The displacement a of

the correlation at t 5 0 [i.e., r(t 5 0) 5 1 2 a] is an

indicator of measurement error.

Vinnikov et al. (1996) noted that the variance in any

time series of observed measurements is composed of

the sum of the actual variance of the measured quantity

and the noise contributed from random observational

error. The ratio of error variance d2 to real variance s2

is related to the displacement of the extrapolated

autocorrelation:

d2

s2
5

� a

11 a

�
. (2)

This relative error can also be derived from a different

perspective using triple collocation (Gruber et al. 2016).

Given a sufficient number of measurements, observa-

tional error from a station or network of stations can be

estimated without specific validation or comparison to

independent data. This is a very powerful result that can

provide a measure of uncertainty for data that have red

noise spectra, such as soil moisture.

We have applied this approach to estimate the error in

the networks represented in ISMN and NASMD.

Figure 2 shows the relative random error as the square

root of the ratio in Eq. (2) estimated across all stations in

each network for the two databases. The data from all

networks are interpolated to the four Noah2.7 model

layers: 0–10, 10–40, 40–100, and 100–200 cm. Recall that

for the same networks ISMN and NASMD do not al-

ways contain the same stations or span of years. As a

result, the estimated observational errors for the same

networks in the two databases do not match exactly—

the differences may be taken as representative of the

uncertainties in applying this method.

Certain features are apparent nevertheless. As found

by Gruber et al. (2013), observational errors are gener-

ally largest in the surface layer and decrease with depth.

There is also a distinct difference between networks, and

in fact between types of instrumentation. The GPS re-

flection method of the PBO H2O network appears to

result in a large relative random error of measurement

FIG. 2. Estimated relative random observational error as a frac-

tion of estimated real soil moisture variability as a function of

depth (interpolated to Noah2.7 LSM layers) for each observa-

tional network in (top) ISMN and (bottom) NASMD. ‘‘All’’ is

a weighted average of all networks by the number of stations in

each network.
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of 0.35 for surface soil moisture. Relative random error

in the cosmic-ray neutron method of the COSMOS

network is nearly as large at 0.32. Some of this may not

be truly random error but rather due to the fact that the

effective measurement depth varies with soil moisture

content, so the static station measurement depths used

here introduce additional error.

Dielectric probes are inexpensive and thus the most

widely used. They have a relative random error of about

0.18 for near-surface measurements, dropping to 0.12

below 1-m depth. Heat-dissipation instruments appear

to be the most stable, with a surface relative random

error of 0.15 dropping to around 0.07 at depth. There

is a great deal of variation among networks using the

same class of instrumentation. For the Center for

Hurricane Intensity and Landfall Investigation (CHILI)

network, which places dielectric instruments only at 1-m

depth, random error appears exceptionally large. The

Soil Moisture Sensing Controller and Optimal Esti-

mator (SoilSCAPE) network also appears to have un-

usually large random errors.

A further aspect of this approach to error estimation is

that we can define representative profiles of a for classes

of instruments, networks, or stations, allowing us to es-

timate a ‘‘corrected’’ soil moisture memory for com-

parison to models, which by their nature do not suffer

from random error in their reported state variables. This

can be accomplished by shifting the linear best fit of ln(r)

by a so as to intersect 0 at t5 0; the corrected estimate of

memory from observations is then the lag at which the

adjusted ln(r) 5 21.

5. Spatial consistency between models and
observations

The high-density SoilSCAPE network contains sev-

eral sets of instruments or ‘‘nodes’’ clustered in groups

within areas of ,1 km2 in several locations. At these

locations it may be assumed that the stations are so close

together that their separations are well within the me-

teorological spatial scale over which precipitation time

series decorrelate. Variations in soil moisture time series

from node to node should be due to variations in the

hydrologic properties of the sites of each node and

random measurement error.

There are also parts of the United States where the

Soil Climate Analysis Network (SCAN) and Snowpack

Telemetry (SNOTEL) have multiple stations separated

by distances larger than SoilSCAPE, but within a typical

global climate model grid boxO(100) km. Variations on

these scales may begin to be determined by differences

in the meteorological time series at each station that

are not represented explicitly by global models

because they are at the subgrid scale. Thus, data from

these sites may allow us to see how this bridging of

scales affects the representativeness of climate model

soil moisture time series and shed light on how to

compare models to observations across scales.

First, we consider how averaging together the time

series of multiple proximate stations affects the statistics

of the time series. The assumption is that a model grid-

box time series is more representative of the average of

multiple stations within that grid box than single sta-

tions. If statistics are found to converge as more stations

are added to the average, and a general scaling factor is

found to apply, we may have a means to translate single-

station statistics to model gridbox statistics and vice

versa. If the statistics do not appear to be sensitive to the

number of stations included in the average, then scaling

may not be necessary to compare pointmeasurements to

model gridbox values.

We examine data from four of the SoilSCAPE sites

that include the most nodes and longest time series.

These are located near Canton, Oklahoma (nodes

numbered in the 100s); Tonzi Ranch, California (400s);

and New Hogan Lake, California (500s and 700s).

Across all sites the maximum separation of any two

nodes is 503m, and the median separation ranges from

166 to 214m. Data span 3 years from 2011 to 2014. We

include 19 nodes from the 400s site, 18 from the 500s, 21

from the 100s, and 13 from the 700s. Also examined are

data from a cluster of 12 SCAN sites in and around

northern Alabama that span 2002–14 and range in sep-

aration from 6 to 118 km, with a median separation

of 52 km.

Calculations were performed using data vertically

interpolated to the Noah2.7 model levels—results

shown here are confined to the top 10-cm layer results,

but lower-level results are consistent with these.We also

examined data for the entire year, and separately by

season.We find themean and standard deviation in time

for time series from each node at a site, then for each

combination of two nodes averaged together only for

days when each has no missing data, then for combina-

tions of three, four, etc., up to the series where all nodes

at a site are averaged together. We also calculate the

variance among each statistic calculated with the same

number of nodes in the combination. Because of missing

data for different dates at various nodes, the total

amount of data in the calculations dwindles as we go to

larger and larger combinations. Figure 3a shows how

data completeness drops from nodes considered one at a

time through larger and larger combinations. We also

constructed an abbreviated complete time series by

taking a subset of the soil moisture data from SCAN

stations in and around northern Alabama—10 stations
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that have complete data from 22 March 2007 through

21 January 2008. This is used to compare the impact of

missing data on statistics.

Figure 3b shows how the average standard deviation

in time for daily surface soil moisture from all seasons

changes as more nodes are averaged together. Aside

from a small uptick when going from single stations to

combinations of two, there is little systematic change

and the curves are remarkably flat. The complete data

suggest a slight drop in the average standard deviation of

;10% from nodes considered individually to all con-

sidered together. Station data during summer only is

more apt to show a slight rise in standard deviations with

more combined nodes, whereas it is flatter in spring and

fall (not shown). Overall, it would seem that the vari-

ability of daily soil moisture time series is not very sen-

sitive to spatial scaling and aggregation over O(100)m

to O(,100) km, and it appears model gridbox soil

moisture can be reasonably validated against single-site

data for this metric.

This is heartening, since there is certainly sensitivity of

the time mean to aggregation of nodes. Figure 3c shows

the coefficient of variation (COV) of mean soil moisture

across the various numbers of combinations of nodes.

There is a general drop in COV as more nodes are in-

cluded in the averaging. The flattening of the slope of the

curve around the middle values of combined nodes

followed by an inflection and steepening of the curves

again as nearly all nodes are included appears not to be

solely an artifact of the drop in data completeness, al-

though it appears to be less pronounced in the complete

data subset.

Soil moisture memory as defined in section 3 is also

examined. Missing data affect the estimation of memory

as lagged autocorrelations can only be estimated when

data are not missing on consecutive days (or 2 days apart

for lag-2 estimates). As we average more stations to-

gether, there are more days when at least one station is

missing data and the sample size decreases more steeply

than for mean or variance.

Figure 4 shows estimates of top 10-cm soil moisture

memory as a function of the number of stations com-

bined for four SoilSCAPE locations, SCAN stations

over northern Alabama, and the complete subset of

those same SCAN stations. There are two curves for

each set of stations. The solid curves show the median

value of soil moisture memory calculated separately

across all combinations of stations taken N at a time, N

indicated on the abscissa. The dotted line is the memory

calculated from the average 1- and 2-day lagged auto-

correlations across all combinations.

There is a clear separation between the three Cal-

ifornia sites and those east of the Rockies. The California

FIG. 3. Aggregation statistics for observational networks (SS

are sets of nodes from SoilSCAPE, 100 is a set of stations in

Oklahoma, the others are in California; SCANAL is a set of SCAN

stations across northern Alabama) with closely located stations.

Values for each number of stations averaged together (abscissa) is

the mean for all combinations with the indicated count: (a) number

of days of data available when any station with missing data results

in missing data for the combined average, (b) the estimated std dev

in time of daily soil moisture (the mean for each month is first

subtracted to remove interannual variability), and (c) the COV

across combinations of the combination means. Black line is from

a subset of SCANALwith nomissing data from any station for 306

consecutive days.
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sites have the longer memories, which is logical as

California has a prolonged dry season when soil mois-

ture anomalies may persist for months relative to the

climatological annual cycle (though we caution that

some of the memory may reflect submonthly facets of

the climatological seasonal cycle, which were not re-

moved by the aforementioned subtraction of monthly

means from the data). They also show discrepancies

between the two approaches to estimating memory for

small numbers of combined stations. The estimates

converge in all cases for greater numbers of combined

stations. The Oklahoma and Alabama sites have

shorter memories, consistent with their year-round

likelihood for precipitation and general lack of a dry

season. They also show very high agreement between

the median memory and the memory calculated from

the mean lagged autocorrelations. In all cases thememory

calculated from the mean lagged autocorrelations in-

creases as more stations are averaged together, by 14%

for the SCAN Alabama sites to nearly 200% for the

SoilSCAPE 700 nodes. Behavior of the medians is less

consistent, as values go up or down as the number of

combined stations increases.

Across this limited number of sites there is not an

obvious relationship between characteristics of the sta-

tion data (e.g., completeness shown in Fig. 3a) and the

type or degree of change from single stations to in-

clusion of all stations. It would not be advisable based on

these results to propose a method to scale memory cal-

culated from individual stations to gridbox averages. It

may be more judicious to compare a number of stations

averaged over a certain area to model output averaged

over the same area, although as shown later there are

suspicious systematic differences between observational

networks as well.

6. Variance and memory

In this section, we begin comparing model estimates

of soil moisture statistics across the conterminous

United States with statistics from collocated in situ

measurements. For each model configuration, stations

are compared to the model grid box that contains them.

Table 5 shows the correlations calculated for each of the

19 networks listed in Table 1 between model and ob-

served intraseasonal (calculated monthly and averaged

for seasons) standard deviations of daily soil moisture.

Correlations are then averaged across the networks,

weighted by the number of stations in each network that

went into the calculation. Because of the varying num-

bers of stations and areal extents of the different net-

works, it is not feasible to assign statistical significance to

the averaged correlations. Networks are separated into

local and regional extents because we have noticed a

rather systematic separation in the correlations: uni-

formly, the models verify poorly with the local (mostly

state level) networks in terms of the spatial pattern of

soil moisture variability, but verify relatively well with

the regional and national networks. This suggests that

patterns of variability driven by the varying climate re-

gimes across the United States are somewhat well re-

flected by themodels, but smaller-scale variations over a

few hundred kilometers or less are not captured. These

smaller-scale patterns are likely more determined by

variations in soils and landscape that are poorly repre-

sented by LSMs at gridbox scales.

Other patterns are evident in Table 5. Correlations

between models and observations are generally highest

for the shallow layer below the surface layer, which

ranges in thickness from ;2 (Catchment and CLM4) to

10 cm (Noah2.7). There is no indication that the model

output where near-surface meteorology is dictated by

observations (offline and reanalysis) is better than free-

running models. This is somewhat surprising, as there

are acknowledged problems with global model simula-

tions of precipitation, and precipitation quality is the

major control on soil moisture variations (Guo et al.

2006;Wei et al. 2008). The implementation of HTESSEL

in ERA-Interim used a single loamy soil texture

globally, which may mute discrepancies because of soil

property disagreement with observational sites and

greater resemblance to forcing (precipitation) patterns,

thus increasing correlation. Last, the various config-

urations of the Catchment LSM represent this par-

ticular metric of soil moisture variability more poorly

than any of their counterparts. We should note, however,

that soil moisture products from the Catchment LSM

have been tested extensively against in situ mea-

surements in other studies (Liu et al. 2011; de Lannoy

FIG. 4. As in Fig. 3, but for soil moisture memory (see text for

definition). Solid lines are the median value of memory among all

combinations, and dotted lines show the harmonic mean across all

combinations.
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et al. 2014) and, in terms of capturing the time vari-

ability of soil moisture variation at a wide variety of

sites, the model performs better (average time cor-

relations of about 0.5) than suggested by the pres-

ent metric, which focuses instead on the spatial

correlation against observations of the temporal

standard deviation.

Figure 5 displays the network means andmodel biases

in the daily standard deviation of JJA surface volumetric

soil moisture (top three layers for CLM4) for each

TABLE 5. Spatial pattern correlations of subseasonal JJA std dev of daily soil moisture between stations and model grid boxes for

indicated models. Estimates are grouped by extent of network (local vs regional) and averaged across networks weighted by number of

stations used in each network. Surface refers to the top LSM soil level, except CLM4, where it is the total for the top three layers; shallow is

the second layer except for CLM4, where it is layers 4–6; deep is the third layer for Noah2.7 and HTESSEL and layers 7–8 for CLM4.

Local Regional

GLDAS CFSR CFS 20CR GLDAS CFSR CFS 20CR

Noah2.7 Surface 20.13 0.06 20.01 0.06 0.38 0.40 0.30 0.25

Shallow 0.08 0.09 20.06 0.06 0.39 0.34 0.33 0.30

Deep 0.09 0.00 20.09 0.00 0.25 0.21 0.22 0.18

MERRA Land MERRA GEOS-5 MERRA Land MERRA GEOS-5

Catchment Surface 20.13 20.11 20.09 0.08 20.04 0.21

Shallow 0.07 0.10 0.29 0.21

ERA-Interim Land ERA Interim IFS ERA-Interim Land ERA Interim IFS

HTESSEL Surface 0.07 0.03 0.12 0.40 0.50 0.47

Shallow 0.09 0.03 0.34 0.43

Deep 20.02 0.01 0.28 0.32

CLM4 CCSM4 CLM4 CCSM4

CLM4 Surface 0.14 0.07 0.41 0.39

Shallow 0.11 0.05 0.33 0.34

Deep 0.07 20.03 0.27 0.25

Offline Reanalysis Free Offline Reanalysis Free

Multimodel Surface 20.01 0.01 0.09 0.31 0.28 0.35

Shallow 0.09 0.06 0.12 0.34 0.36 0.29

Deep 0.03 0.00 0.04 0.27 0.24 0.22

FIG. 5. Average std dev of daily surface volumetric soil moisture (dimensionless) during JJA

for stations in each network (first column after network names), and the average bias of std dev

for each model across the station locations of each network. Average and std dev of each

network andmodel are shown at the right and bottom of the grid, respectively. Color shading is

to aid recognition of negative (blue) and positive (red) biases. Two networks that employ heat-

dissipation sensors are shaded orange, two networks that use near-field remote sensing tech-

niques are shaded green, and all others use some form of dielectric probe.
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model configuration and network in a color-coded

tabular form. There are clear systematic biases in the

representation of soil moisture variability among the

models. Offline versions of both HTESSEL (ERA-

Interim Land) and CLM4 exhibit excessive variance of

soil moisture. For the Noah2.7 LSM the offline version

(GLDAS) also has the highest variance, but still has a

low overall bias across all networks. The reanalyses tend

to exhibit the lowest variability, although the Climate

Forecast System Reanalysis (CFSR) is essentially un-

distinguishable from the offline or free-running (CFS)

simulations. Among the four model groups, CLM4 has

the strongest positive biases and Catchment (MERRA

and GEOS-5) has the strongest negative biases.

The vagaries of validation with multiple observational

networks are also evident when one compares the different

rows of Fig. 5. Models exhibit the strongest positive biases

for the two networks that employ heat-dissipation sensors,

ARM and OK-MESO, suggesting these sensors may be-

have differently than other types of measurements. All

models show negative biases for theMissouri network, and

most also show negative biases for theWest Texas network.

Meanwhile, biases are generally positive for the Delaware

Environmental Observing System (DEOS); WTX-MESO

and DEOS employ the same model of dielectric soil

moisture probe at the same depth for surface soil moisture

(5cm), so the systematic differences aremore likelybecause

of disparities between the gridded soil parameter datasets

commonly used by models and actual local conditions.

Soil moisture memory is calculated as described in

section 3. The extrapolation procedure from data during

a season can result in e-folding time scales for lagged

autocorrelations that vary over two or more orders of

magnitude in some cases. Accuracy of long-memory

estimates is particularly tenuous, so all averaging is done

in terms of frequency rather than time, and the inverse

of the result is taken to give a memory time scale in days

(i.e., the harmonic mean is used).

Table 6 shows how well the spatial patterns of soil

moisture memory agree between models and obser-

vations. As in Table 5, the network results are grouped

by extent: local versus regional/national. As with soil

moisture variance, models represent large-scale pat-

terns of memory better than intrastate variations.

However, correlations are generally lower for memory

than for the standard deviation of soil moisture. The

highest skill is exhibited for surface soil moisture

memory among the local networks and for shallow

(;10–50-cm depth) soil moisture memory at larger

scales. Free-running land–atmosphere models perform

worst at simulating large-scale patterns of soil moisture

memory—this could be because of errors in the tem-

poral spectrum of precipitation in models (cf. Wei et al.

2010; Dirmeyer 2013). Interestingly, free-running

models do the best at representing local network vari-

ations, but although the correlations are generally

statistically significant because of the large number

of stations included, they do not suggest practical

TABLE 6. As in Table 5, but for soil moisture memory.

Local Regional

GLDAS CFSR CFS 20CR GLDAS CFSR CFS 20CR

Noah2.7 Surface 0.11 0.11 0.16 0.17 0.30 0.20 0.18 0.22

Shallow 20.07 0.05 0.06 0.15 0.41 0.30 0.21 0.21

Deep 20.03 20.07 20.04 20.01 0.15 0.17 0.12 0.10

MERRA Land MERRA GEOS-5 MERRA Land MERRA GEOS-5

Catchment Surface 0.23 0.18 0.20 0.17 0.20 0.16

Shallow 0.05 0.04 0.04 0.09

ERA-Interim Land ERA Interim IFS ERA-Interim Land ERA Interim IFS

HTESSEL Surface 20.09 0.19 0.16 0.14 0.08 0.06

Shallow 0.09 0.06 0.15 0.25

Deep 0.02 20.07 0.10 0.29

CLM4 CCSM4 CLM4 CCSM4

CLM4 Surface 0.08 20.02 0.15 0.08

Shallow 20.03 20.09 0.25 0.08

Deep 20.02 20.01 0.15 0.02

Offline Reanalysis Free Offline Reanalysis Free

Multimodel Surface 0.08 0.16 0.16 0.19 0.17 0.12

Shallow 0.01 0.09 0.11 0.21 0.25 0.13

Deep 20.01 20.05 0.05 0.09 0.19 0.07
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usefulness. Various configurations with the Noah2.7

LSM show the best pattern correlations.

Figure 6 presents network-by-network comparisons of

JJA surface soil moisture memory biases in the same

manner as Fig. 5. The mean memory for different net-

works varies from less than 4 to more than 17 days, but

there is considerable variation within each network.

Model biases can be substantial. Model configurations

using the Catchment land surface scheme predomi-

nantly exhibit strong positive biases, suggesting that the

model is overly persistent in soil moisture anomalies,

despite the fact it has the thinnest surface layer of the

four LSMs. As noted in section 2d, Catchment has a

distinctly nontraditional structure; its implementation of

an explicit treatment of subgrid soil moisture variability

is known to tie together strongly its diagnosed surface

and subsurface soil moisture variables (Kumar et al.

2009), which can in fact produce artificially high values

of memory in surface and shallow layers. On the other

hand, CLM4 (for which the top three layers have been

combined to represent the surface) largely underesti-

mates soil moisture memory. Noah2.7 largely under-

estimates memory as well, except in the Twentieth

Century Reanalysis (20CR), where the spatial reso-

lution is considerably coarser than the other im-

plementations, and the large ensemble approach to

production (Compo et al. 2011) may have a bearing

on hydrologic variables. Another model that shows

inconsistent behavior among implementations is

HTESSEL—the offline ERA-Interim Land simulation

has consistently negative biases in soil moisture, mirrored

also in ECMWF atmospheric coupled integration with

data assimilation (Albergel et al. 2012, 2013), while cou-

pled IFS simulations from the Athena project (Kinter

et al. 2013) and ERA-Interim exhibit a slightly positive

bias, highlighting the impact of both modeling and as-

similation system changes in determining biases.

Finally, error profiles from network to network are

fairly consistent, suggesting again that discrepancies

exist between gridded datasets of land surface parame-

ters used by the models and conditions at the station

sites. An exception is SNOTEL, in which stations are

largely positioned in high mountain locations across the

western United States that may tend toward thinner and

rockier soils than global gridded soil datasets specify or

LSMs represent. Catchment has some of its largest

positive biases over this network where other models

generally have some of their strongest negative biases.

7. Spatial scales

Finally, we examine the spatial decorrelation scales in

the observational networks and models. This approach

is highly analogous to the temporal scaling we defined as

‘‘memory’’ in section 6, and follows similar principles

(Vinnikov et al. 1999; Entin et al. 2000). In the case of

decorrelation of soil moisture time series over space, we

have three factors: decorrelation over meteorological

scales of tens to hundreds of kilometers related to the

spatial scales of the forcing of soil moisture variability,

particularly precipitation; decorrelation over catchment

hydrologic scales of meters to hundreds of meters

brought about by variations in soil properties and sam-

pling of different regimes along hillslopes; and random

measurement errors as characterized in section 4.

As a check, we look first at the SoilSCAPE sites,

whose nodes are close enough together to be well within

the meteorological scales. We find essentially no re-

lationship in any season between the correlation of time

series of soil moisture from pairs of stations and their

separation distances, which range from about 20 to

500m. The implication is that evidence for the ‘‘catch-

ment hydrologic scale’’ of Vinnikov et al. (1999) is

swamped by the random error in measurements.

FIG. 6. As in Fig. 5, but for surface soil moisture memory (days).
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For other networks with greater distance between

stations, a systematic relationship between station sep-

aration and correlation emerges. Figure 7 shows corre-

lation as a function of station separation during summer

for several state networks and larger networks that have

numerous stations in a single state (‘‘Delta’’ refers to all

stations in a region centered on the Mississippi River,

spanning 328–35.18N, 938–85.58W, and ‘‘UT’’ and ‘‘CO’’

refer to stations within Utah and Colorado, re-

spectively). For all networks except the West Texas

Mesonet there is a clear decrease in correlation with

distance. The two networks using heat-dissipation sen-

sors, ARM and the OK-MESO, have the two largest

values of extrapolated correlation at distance 0, sug-

gesting in a way similar to Fig. 2 that these sensors have

small random errors. They also show higher correlations

at larger distances than neighboring Automated

Weather Data Network (AWDN) (Nebraska) or other

dielectric sensor networks in the Midwest or eastern

United States. The western networks (SCAN UT,

SNOTEL CO, and SNOTEL UT) tend to show high

correlations at large separations like ARM and OK-

MESO, likely indicative of the relatively rare precipi-

tation in those areas during summer. The two networks

overlapping in Utah (SCAN UT and SNOTEL UT)

appear to show very different spatial correlation scales,

but when they are adjusted for their different apparent

random errors (discussed below), they become quite

comparable. SCAN stations are located mainly in agri-

cultural valleys and lowlands while SNOTEL stations

are predominantly in mountains at higher altitudes; it is

unclear how this may affect error estimates.

Figure 8 presents a color-coded table of model com-

parisons to network estimates of the spatial decorrela-

tion distance (km) for surface soil moisture during JJA,

defined as the separation between stations where zero-

lag temporal correlation of time series of daily soil

moisture drops to 1/e based on a best-fit regression of

ln(r) against distance. For the stations, the lines are shifted

so that the intercept at distance 0 is at a correlation of 1,

adjusting for the effect of random measurement error on

correlations. This has the effect of increasing the spatial

decorrelation distance. No such adjustment is necessary

for model output, where distances are calculated for

each grid box relative to the eight surrounding grid

boxes with distances calculated between the centers of

each grid box. Both standard and harmonic means are

given across models, and the standard deviation is rel-

ative to the standard mean.

Many difficulties in estimating spatial decorrelation

scales consistently across networks, and comparing

models to them, are evident. The spatial decorrelation

distances for each network follow from what was shown

in Fig. 7. Memories are longer in the west (typically

several weeks as opposed to;1 week in the central and

eastern United States), and they are long for the two

networks with heat-dissipation sensors (shaded orange).

AWDN (Nebraska) and DEOS (Delaware) show much

FIG. 7. Spatial autocorrelation of daily surface layer soil moisture

during JJA as a function of separation between stations for several

networks, binned in intervals of 10 km. Lines indicate linear best

fits through the binned log of correlation (negative values omitted).

FIG. 8. Average spatial decorrelation distance (km) where zero-lag temporal correlation of

time series of daily soil moisture drops to 1/e for surface volumetric soil moisture during JJA for

stations in each network (first column after network names), and models. Colors indicate

percentage deviation of each model (averaged over domain of network) relative to in situ

network estimates with estimated random measurement error removed. SD is std dev

among models.
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shorter decorrelation distances than other networks. The

contrast between AWDN and both ARM and OK-

MESO is especially troubling, since they are all close to

each other in the Great Plains. Here the different per-

formance of various types of sensors is obvious. Compare

to the SCANUT and SNOTELUT networks over Utah,

which use similar instruments and are within 6% of each

other once adjusted for random measurement error.

Looking at the models, there is a tendency for over-

estimation of the decorrelation distance. This may be

related to the differences in scaling between the point

observations and model grid boxes. Even though many

pairs of stations are used to estimate the correlations as a

function of separation shown in Fig. 7, they still represent

point-versus-point correlations, and not area-versus-area

as is implied in model gridbox values. Comparing sets of

stations averaged over areas comparable to adjacent

model grid boxes might provide a more proportionate

estimate, but we immediately face the problem of a lack

of station density over all but a few areas. We saw in

section 6 that the estimation ofmemory, which is a closely

related calculation to decorrelation distance (Vinnikov

et al. 1996), is not scale resilient like variance.

The row of Fig. 8 labeled ‘‘Corr (no WTX)’’ is the

correlation between model and network estimates across

the first nine networks listed. The curve fit for WTX-

MESO is so flat (see Fig. 7) that a ridiculously long dis-

tance is projected for this network, so it is not included in

the correlation. The probability shown is the likelihood

the correlation could be arrived at by chance (with 7

degrees of freedom); a one-tailed test is made as there is

no inherent value in a negative correlation. The free-

running CFS simulation would appear to perform well,

with a correlation of 0.67 and only a 5% chance of ar-

riving at this correlation randomly. However, out of 12

models, it is not surprising to see one with a probability

below 8%–10%, and the slope of the fit through the

scatter is nearly 1:4, far from 1:1. The harmonic mean of

all models produces a lower positive bias than a straight

mean, but a negative correlation across the networks.

Among the models there is a great deal of variation.

There is not a consistent behavior of offline LSMs relative

to coupled models, or reanalyses relative to free-running

GCMs. However, the suite of models using the Catchment

LSM tends to have shorter decorrelation distances than

either theHTESSELorCLM4sets ofmodels. TheNoah2.7

set spans a wide range, varying by a factor of 2 from offline

GLDAS to the low-resolution 20CR simulation.

8. Conclusions and discussion

In this study, we have confronted a number of LSMs in

both coupled and uncoupled modes with in situ soil

moisture measurements from a number of independent

networks over the conterminous United States to 1) de-

termine the feasibility and pitfalls of such a comparison

and 2) see what can be learned about model and obser-

vational data. We first investigate characteristics of the

observational data, with particular attention to how they

differ between networks (possibly because of differences

in instrumentation), in space, and over time.We then test

approaches to compare model output to the observa-

tional data.

We examine three statistical metrics: variability as

measured by the standard deviation of daily soil mois-

ture, memory represented by the time it takes lagged

autocorrelation of daily soil moisture to drop to 1/e, and

spatial scale calculated like memory as the distance over

which unlagged correlations between soil moisture

measurements or model estimates drop to 1/e. For

measurement networks with many closely located sta-

tions within the area of a typical model grid box, we find

that aggregation of many stations (arguably more rep-

resentative of gridbox-average values represented by

LSMs) has little effect on the standard deviation, but

does change estimates of memory in nonsystematic

ways. Data completeness can affect aggregation, but not

in a clearly predictable way. Although not directly in-

vestigated here, there is evidence that spatial scale es-

timates are also sensitive to the combination of stations.

We conclude that modeled soil moisture variability can

be safely validated against data from single stations, but

other metrics cannot.

Another caveat regarding in situ soil moisture data is

that there can be clear differences between the statistical

properties of data from different networks that are in the

same or adjacent locations. This mirrors what is already

established for soil moisture products between models

(Koster et al. 2009). In some cases this seems to be

caused by the type of sensor used. Buried probes seemed

to exhibit less random error than near-field remote

sensing techniques, although we do find networks with

dielectric sensors that appear to have large random er-

rors. Heat-dissipation sensors have generally low ran-

dom error, but also lower day-to-day variability and

connote longer soil moisture memory than dielectric

probes, even after random errors are accounted for.

Random measurement errors generally decrease with

depth for buried sensors. There are also differences in

estimated random errors between networks with essen-

tially the same instrumentation, suggesting differences in

calibration and maintenance may also be a factor.

Models show systematic biases in near-surface soil

moisture metrics (Figs. 5, 6, and 8). The model config-

urations with the Catchment LSM all show too little

variability and long memory, but in the case of
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free-running GEOS-5 simulations, an unusually short

spatial scale in some cases. Bosilovich (2013) showed

some precipitation comparisons for MERRA indicating

too little interannual variability. CLM4 tends toward

excessive variability and short memory. The characteris-

tics of variability and memory are not always in opposi-

tion—ERA-Interim Land has positive biases in both

while ERA-Interim has negative in both. These features

can be attributed to the modeled soil moisture range

lacking spatial variability in ERA-Interim, as docu-

mented in the soil hydrology revision (Balsamo et al.

2009). An interesting dependency on spatial resolution

can be deduced from the IFS integrations within the

Athena project that used a 4-times-higher spatial reso-

lution, enhancing the match to in situ standard deviations

of daily surface volumetric soil moisture (Fig. 5), memory

(Fig. 6), and spatial decorrelation distance (Fig. 8).

The various implementations of the Noah2.7 LSM

range between low and high biases, but often have the

lowest biases across all networks. For both variability

andmemory themodels show higher spatial correlations

across stations within regional to national networks than

to state-level networks (Tables 5, 6), suggesting they

reflect large-scale hydroclimate patterns better than lo-

cal ones. The specification of soil hydrologic properties

in models is much coarser than natural heterogeneity of

the soils in most regions, reflecting another aspect of

subgrid variability in large-scale models that is poorly

represented and confounds validation. Free-running

coupled land–atmosphere models perform worst at

simulating large-scale patterns, possibly because of the

poor simulation of precipitation spectra by GCMs.

Spatial scales were found to be particularly difficult to

diagnose. For the SoilSCAPE network where stations

are separated by only O(100)m, there appears to be no

dependence of interstation correlation on distance be-

tween stations. Theory suggests there is a ‘‘catchment

hydrologic scale’’ in this range (Vinnikov et al. 1999),

but measurements seem to be dominated by random

errors that obscure evidence of it. Meteorological-scale

decorrelation over ranges of O(10–1000) km is clear in

observations and models, but we find the heat-

dissipation sensors seem to imply longer spatial scales,

and different networks of dielectric sensors can give very

wide ranges of estimates that appear unrealistic. CLM4,

Catchment, and HTESSEL each represent subgrid sur-

face variations to differing extents, but this does not

translate well to representation of observed subgrid

variability (cf. Bosilovich 2002). To put comparisons

between models and observations on the same footing

for this metric, stations should first be aggregated into

average time series over areas comparable to model grid

boxes before estimating spatial decorrelation distances.

Overall, statistical vagaries between different soil mois-

ture networks using different types of sensors and mea-

surement techniques suggest great caution is needed when

using these data for validation, calibration, or data as-

similation. The typical assumption that model errors are

large while observational errors are small may not apply

readily for soil moisture. This is particularly important

as the LSM community moves toward a more rigorous

benchmarking approach (e.g., Best et al. 2015) for fluxes

and other variables such as soil moisture. The results

here also suggest statistical considerations that should

be applied when extending model evaluation or bench-

marking to two dimensions rather than at a single point.

Onemust be very careful about scaling issues—everything

possible should be done to put data fromdifferent sources

on the same footing before comparison. Only temporal

variability seemed to be insensitive to the differences in

scale between point measurements and model gridbox

values.

Note that this study is largely exploratory and we opt

to go wide rather than deep; instead of giving a highly

detailed examination of a particular soil moisture

metric, observational network, or model, we traverse

data and metrics from multiple observational networks

and models. Our aim is to explore the problems and

pitfalls, as well as bring to light the areas of promise for

validation of models with observed soil moisture data.

The indicated biases potentially indicate deficiencies in

the land models. However, they may also reflect the

model-specific character of a given land models’ soil

moisture representation. Given the necessity of com-

puting fluxes averaged over large and complex domains

with limited spatial resolution in soil moisture de-

scription, soil moisture in land models is arguably

better interpreted as a model-specific index of wetness

than a variable that can be directly compared to ob-

servations (Dirmeyer 2004; Koster et al. 2009). For this

reason, modeled soil moisture is known to have model-

specific magnitudes (and yet still function well in cli-

mate models); by the same token, standard deviations

of soil moisture will also necessarily be model specific.

This point underscores a major difficulty faced when

confronting land models with such observations.

The work presents several means to approach the

assessment of model soil moisture behavior with in situ

observations with particular focus on spatiotemporal

inconsistencies. The problem is analogous to that faced

in operational data assimilation, where observations

from a wide range of sources with different spatiotem-

poral coverage and error characteristics must be harmo-

nized to generate useful analyses. Key to such approaches

is a large and robust set of calibration and validation data;

none of the networks examined here are due to be
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discontinued, and more networks are coming online and

being synthesized into NASMD and ISMN every year,

so the situation should only improve. Furthermore,

satellites can provide spatially continuous measure-

ments at scales comparable tomodel grid boxes. Current

missions are beginning to provide such information, but

better temporal coverage at higher spatial resolution,

maintained uninterrupted over decades, will provide, in

combination with in situ measurements and synthesis

through data assimilation, the best overall monitoring

and initialization for forecasts. Despite this, models can

still be improved using the growing observational re-

cord to identify and improve processes and parame-

terizations that contribute to errors in the surface

water cycle.
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